Докажите что lnx 1 x
Перейти к содержимому

Докажите что lnx 1 x

  • автор:

Таблица производных. Доказательство формул

Приведем сводную таблицу для удобства и наглядности при изучении темы.

Константа y = C

Степенная функция y = x p

( x p ) ‘ = p · x p — 1

Показательная функция y = a x

( a x ) ‘ = a x · ln a

В частности, при a = e имеем y = e x

( e x ) ‘ = e x

Логарифмическая функция

( log a x ) ‘ = 1 x · ln a

В частности, при a = e имеем y = ln x

( ln x ) ‘ = 1 x

Тригонометрические функции

( sin x ) ‘ = cos x ( cos x ) ‘ = — sin x ( t g x ) ‘ = 1 cos 2 x ( c t g x ) ‘ = — 1 sin 2 x

Обратные тригонометрические функции

( a r c sin x ) ‘ = 1 1 — x 2 ( a r c cos x ) ‘ = — 1 1 — x 2 ( a r c t g x ) ‘ = 1 1 + x 2 ( a r c c t g x ) ‘ = — 1 1 + x 2

Гиперболические функции

( s h x ) ‘ = c h x ( c h x ) ‘ = s h x ( t h x ) ‘ = 1 c h 2 x ( c t h x ) ‘ = — 1 s h 2 x

Разберем, каким образом были получены формулы указанной таблицы или, иначе говоря, докажем вывод формул производных для каждого вида функций.

Производная постоянной

Доказательство 1

Для того, чтобы вывести данную формулу, возьмем за основу определение производной функции в точке. Используем x 0 = x , где x принимает значение любого действительного числа, или, иначе говоря, x является любым числом из области определения функции f ( x ) = C . Составим запись предела отношения приращения функции к приращению аргумента при ∆ x → 0 :

lim ∆ x → 0 ∆ f ( x ) ∆ x = lim ∆ x → 0 C — C ∆ x = lim ∆ x → 0 0 ∆ x = 0

Обратите внимание, что под знак предела попадает выражение 0 ∆ x . Оно не есть неопределенность «ноль делить на ноль», поскольку в числителе записана не бесконечно малая величина, а именно нуль. Иначе говоря, приращение постоянной функции всегда есть нуль.

Итак, производная постоянной функции f ( x ) = C равна нулю на всей области определения.

Даны постоянные функции:

f 1 ( x ) = 3 , f 2 ( x ) = a , a ∈ R , f 3 ( x ) = 4 . 13 7 22 , f 4 ( x ) = 0 , f 5 ( x ) = — 8 7

Необходимо найти их производные.

Решение

Опишем заданные условия. В первой функции мы видим производную натурального числа 3 . В следующем примере необходимо брать производную от а , где а — любое действительное число. Третий пример задает нам производную иррационального числа 4 . 13 7 22 , четвертый — производную нуля (нуль – целое число). Наконец, в пятом случае имеем производную рациональной дроби — 8 7 .

Ответ: производные заданных функций есть нуль при любом действительном x (на всей области определения)

f 1 ‘ ( x ) = ( 3 ) ‘ = 0 , f 2 ‘ ( x ) = ( a ) ‘ = 0 , a ∈ R , f 3 ‘ ( x ) = 4 . 13 7 22 ‘ = 0 , f 4 ‘ ( x ) = 0 ‘ = 0 , f 5 ‘ ( x ) = — 8 7 ‘ = 0

Производная степенной функции

Переходим к степенной функции и формуле ее производной, имеющей вид: ( x p ) ‘ = p · x p — 1 , где показатель степени p является любым действительным числом.

Приведем доказательство формулы, когда показатель степени – натуральное число: p = 1 , 2 , 3 , …

Вновь опираемся на определение производной. Составим запись предела отношения приращения степенной функции к приращению аргумента:

( x p ) ‘ = lim ∆ x → 0 = ∆ ( x p ) ∆ x = lim ∆ x → 0 ( x + ∆ x ) p — x p ∆ x

Чтобы упростить выражение в числителе, используем формулу бинома Ньютона:

( x + ∆ x ) p — x p = C p 0 + x p + C p 1 · x p — 1 · ∆ x + C p 2 · x p — 2 · ( ∆ x ) 2 + . . . + + C p p — 1 · x · ( ∆ x ) p — 1 + C p p · ( ∆ x ) p — x p = = C p 1 · x p — 1 · ∆ x + C p 2 · x p — 2 · ( ∆ x ) 2 + . . . + C p p — 1 · x · ( ∆ x ) p — 1 + C p p · ( ∆ x ) p

( x p ) ‘ = lim ∆ x → 0 ∆ ( x p ) ∆ x = lim ∆ x → 0 ( x + ∆ x ) p — x p ∆ x = = lim ∆ x → 0 ( C p 1 · x p — 1 · ∆ x + C p 2 · x p — 2 · ( ∆ x ) 2 + . . . + C p p — 1 · x · ( ∆ x ) p — 1 + C p p · ( ∆ x ) p ) ∆ x = = lim ∆ x → 0 ( C p 1 · x p — 1 + C p 2 · x p — 2 · ∆ x + . . . + C p p — 1 · x · ( ∆ x ) p — 2 + C p p · ( ∆ x ) p — 1 ) = = C p 1 · x p — 1 + 0 + 0 + . . . + 0 = p ! 1 ! · ( p — 1 ) ! · x p — 1 = p · x p — 1

Так, мы доказали формулу производной степенной функции, когда показатель степени – натуральное число.

Доказательство 3

Чтобы привести доказательство для случая, когда p — любое действительное число, отличное от нуля, используем логарифмическую производную (здесь следует понимать отличие от производной логарифмической функции). Чтобы иметь более полное понимание желательно изучить производную логарифмической функции и дополнительно разобраться с производной неявно заданной функции и производной сложной функции.

Рассмотрим два случая: когда x положительны и когда x отрицательны.

Итак, x > 0 . Тогда: x p > 0 . Логарифмируем равенство y = x p по основанию e и применим свойство логарифма:

y = x p ln y = ln x p ln y = p · ln x

На данном этапе получили неявно заданную функцию. Определим ее производную:

( ln y ) ‘ = ( p · ln x ) 1 y · y ‘ = p · 1 x ⇒ y ‘ = p · y x = p · x p x = p · x p — 1

Теперь рассматриваем случай, когда x – отрицательное число.

Если показатель p есть четное число, то степенная функция определяется и при x < 0 , причем является четной: y ( x ) = - y ( ( - x ) p ) ' = - p · ( - x ) p - 1 · ( - x ) ' = = p · ( - x ) p - 1 = p · x p - 1

y ‘ ( x ) = ( — ( — x ) p ) ‘ = — ( ( — x ) p ) ‘ = — p · ( — x ) p — 1 · ( — x ) ‘ = = p · ( — x ) p — 1 = p · x p — 1

Последний переход возможен в силу того, что если p — нечетное число, то p — 1 либо четное число, либо нуль (при p = 1 ), поэтому, при отрицательных x верно равенство ( — x ) p — 1 = x p — 1 .

Итак, мы доказали формулу производной степенной функции при любом действительном p .

f 1 ( x ) = 1 x 2 3 , f 2 ( x ) = x 2 — 1 4 , f 3 ( x ) = 1 x log 7 12

Определите их производные.

Решение

Часть заданных функций преобразуем в табличный вид y = x p , опираясь на свойства степени, а затем используем формулу:

f 1 ( x ) = 1 x 2 3 = x — 2 3 ⇒ f 1 ‘ ( x ) = — 2 3 · x — 2 3 — 1 = — 2 3 · x — 5 3 f 2 ‘ ( x ) = x 2 — 1 4 = 2 — 1 4 · x 2 — 1 4 — 1 = 2 — 1 4 · x 2 — 5 4 f 3 ( x ) = 1 x log 7 12 = x — log 7 12 ⇒ f 3 ‘ ( x ) = — log 7 12 · x — log 7 12 — 1 = — log 7 12 · x — log 7 12 — log 7 7 = — log 7 12 · x — log 7 84

Производная показательной функции

Доказательство 4

Выведем формулу производной, взяв за основу определение:

( a x ) ‘ = lim ∆ x → 0 a x + ∆ x — a x ∆ x = lim ∆ x → 0 a x ( a ∆ x — 1 ) ∆ x = a x · lim ∆ x → 0 a ∆ x — 1 ∆ x = 0 0

Мы получили неопределенность. Чтобы раскрыть ее, запишем новую переменную z = a ∆ x — 1 ( z → 0 при ∆ x → 0 ). В таком случае a ∆ x = z + 1 ⇒ ∆ x = log a ( z + 1 ) = ln ( z + 1 ) ln a . Для последнего перехода использована формула перехода к новому основанию логарифма.

Осуществим подстановку в исходный предел:

( a x ) ‘ = a x · lim ∆ x → 0 a ∆ x — 1 ∆ x = a x · ln a · lim ∆ x → 0 1 1 z · ln ( z + 1 ) = = a x · ln a · lim ∆ x → 0 1 ln ( z + 1 ) 1 z = a x · ln a · 1 ln lim ∆ x → 0 ( z + 1 ) 1 z

Вспомним второй замечательный предел и тогда получим формулу производной показательной функции:

( a x ) ‘ = a x · ln a · 1 ln lim z → 0 ( z + 1 ) 1 z = a x · ln a · 1 ln e = a x · ln a

Даны показательные функции:

f 1 ( x ) = 2 3 x , f 2 ( x ) = 5 3 x , f 3 ( x ) = 1 ( e ) x

Необходимо найти их производные.

Решение

Используем формулу производной показательной функции и свойства логарифма:

f 1 ‘ ( x ) = 2 3 x ‘ = 2 3 x · ln 2 3 = 2 3 x · ( ln 2 — ln 3 ) f 2 ‘ ( x ) = 5 3 x ‘ = 5 3 x · ln 5 1 3 = 1 3 · 5 3 x · ln 5 f 3 ‘ ( x ) = 1 ( e ) x ‘ = 1 e x ‘ = 1 e x · ln 1 e = 1 e x · ln e — 1 = — 1 e x

Производная логарифмической функции

Доказательство 5

Приведем доказательство формулы производной логарифмической функции для любых x в области определения и любых допустимых значениях основания а логарифма. Опираясь на определение производной, получим:

( log a x ) ‘ = lim ∆ x → 0 log a ( x + ∆ x ) — log a x ∆ x = lim ∆ x → 0 log a x + ∆ x x ∆ x = = lim ∆ x → 0 1 ∆ x · log a 1 + ∆ x x = lim ∆ x → 0 log a 1 + ∆ x x 1 ∆ x = = lim ∆ x → 0 log a 1 + ∆ x x 1 ∆ x · x x = lim ∆ x → 0 1 x · log a 1 + ∆ x x x ∆ x = = 1 x · log a lim ∆ x → 0 1 + ∆ x x x ∆ x = 1 x · log a e = 1 x · ln e ln a = 1 x · ln a

Из указанной цепочки равенств видно, что преобразования строились на основе свойства логарифма. Равенство lim ∆ x → 0 1 + ∆ x x x ∆ x = e является верным в соответствии со вторым замечательным пределом.

Заданы логарифмические функции:

f 1 ( x ) = log ln 3 x , f 2 ( x ) = ln x

Необходимо вычислить их производные.

Решение

Применим выведенную формулу:

f 1 ‘ ( x ) = ( log ln 3 x ) ‘ = 1 x · ln ( ln 3 ) ; f 2 ‘ ( x ) = ( ln x ) ‘ = 1 x · ln e = 1 x

Итак, производная натурального логарифма есть единица, деленная на x .

Производные тригонометрических функций

Доказательство 6

Используем некоторые тригонометрические формулы и первый замечательный предел, чтобы вывести формулу производной тригонометрической функции.

Согласно определению производной функции синуса, получим:

( sin x ) ‘ = lim ∆ x → 0 sin ( x + ∆ x ) — sin x ∆ x

Формула разности синусов позволит нам произвести следующие действия:

( sin x ) ‘ = lim ∆ x → 0 sin ( x + ∆ x ) — sin x ∆ x = = lim ∆ x → 0 2 · sin x + ∆ x — x 2 · cos x + ∆ x + x 2 ∆ x = = lim ∆ x → 0 sin ∆ x 2 · cos x + ∆ x 2 ∆ x 2 = = cos x + 0 2 · lim ∆ x → 0 sin ∆ x 2 ∆ x 2

Наконец, используем первый замечательный предел:

sin ‘ x = cos x + 0 2 · lim ∆ x → 0 sin ∆ x 2 ∆ x 2 = cos x

Итак, производной функции sin x будет cos x .

Совершенно также докажем формулу производной косинуса:

cos ‘ x = lim ∆ x → 0 cos ( x + ∆ x ) — cos x ∆ x = = lim ∆ x → 0 — 2 · sin x + ∆ x — x 2 · sin x + ∆ x + x 2 ∆ x = = — lim ∆ x → 0 sin ∆ x 2 · sin x + ∆ x 2 ∆ x 2 = = — sin x + 0 2 · lim ∆ x → 0 sin ∆ x 2 ∆ x 2 = — sin x

Т.е. производной функции cos x будет – sin x .

Формулы производных тангенса и котангенса выведем на основе правил дифференцирования:

t g ‘ x = sin x cos x ‘ = sin ‘ x · cos x — sin x · cos ‘ x cos 2 x = = cos x · cos x — sin x · ( — sin x ) cos 2 x = sin 2 x + cos 2 x cos 2 x = 1 cos 2 x c t g ‘ x = cos x sin x ‘ = cos ‘ x · sin x — cos x · sin ‘ x sin 2 x = = — sin x · sin x — cos x · cos x sin 2 x = — sin 2 x + cos 2 x sin 2 x = — 1 sin 2 x

Производные обратных тригонометрических функций

Раздел о производной обратных функций дает исчерпывающую информацию о доказательстве формул производных арксинуса, арккосинуса, арктангенса и арккотангенса, поэтому дублировать материал здесь не будем.

Производные гиперболических функций

Доказательство 7

Вывод формул производных гиперболического синуса, косинуса, тангенса и котангенса осуществим при помощи правила дифференцирования и формулы производной показательной функции:

s h ‘ x = e x — e — x 2 ‘ = 1 2 e x ‘ — e — x ‘ = = 1 2 e x — — e — x = e x + e — x 2 = c h x c h ‘ x = e x + e — x 2 ‘ = 1 2 e x ‘ + e — x ‘ = = 1 2 e x + — e — x = e x — e — x 2 = s h x t h ‘ x = s h x c h x ‘ = s h ‘ x · c h x — s h x · c h ‘ x c h 2 x = c h 2 x — s h 2 x c h 2 x = 1 c h 2 x c t h ‘ x = c h x s h x ‘ = c h ‘ x · s h x — c h x · s h ‘ x s h 2 x = s h 2 x — c h 2 x s h 2 x = — 1 s h 2 x

Рекомендуется выучить формулы из таблицы производных: они не столь сложны для запоминания, но экономят много времени, когда необходимо решать задачи дифференцирования.

Докажите ,что уравнение x=1+lnx имеет ровно один корень, и найдите этот корень .

65536

Контрольна робота №1 Нерівності B-I 1. Дано: 7<< 11. Оцініть значення виразу: А) 0.20; Б) За+7; B)-6a; г) 4,8-40. 2. Доведіть нерівність: ( … a-4)-12 (a-7)(a-1); 3. Розв’яжіть нерівність: 1) 3x >-15: 2) 7x+3≤30-2x 3) 4(x+2)2-(1-2x) anica WKp1, Are6 P25024 acer 4 Розв’яжіть систему нерівностей: [3x-4<8 х+653x 5 Знайдіть цілі розв’язки системи нерівностей: д x+1 > 3 3(x+1)+5≥4(x-3)+15 6. При яких значеннях змінної має зміст вираз: 5x 2 √3x-7 x²-16 +√6-х

Порівняти числа 11,4 і 10,4; -11,4 і 10,4 Пожалуйста помогите

2. Знайти відстань між точками М і С, якщо M(-3;1), C(4;1)​

доказать_неравенство — Доказать неравенство $%x^2\ln x-y^2\ln y \le 5e^2(x-y)$%

А что, взять производную функции $%f(x)=x^2 \ln(x)$% не получается?

(3 Дек ’18 19:31) knop

Это как раз легко $$f’=2x\ln x+x$$

(3 Дек ’18 19:33) Роман83

Производная там $%2x \ln x + x$%, оценим это как $%2x\cdot 2+x = 5x\le 5e^2$%, и всё.

(3 Дек ’18 19:34) knop

Спасибо. Уже понял, что тут нужно использовать определение производной

(3 Дек ’18 19:37) Роман83

См. «Формула конечных приращений», она же «Теорема Лагранжа о среднем значении».

(3 Дек ’18 19:38) knop

@Роман83, нет, не совсем определение. Это именно специальная теорема.

(3 Дек ’18 19:38) knop
(3 Дек ’18 19:40) Роман83
показано 5 из 7 показать еще 2

Здравствуйте

Математика — это совместно редактируемый форум вопросов и ответов для начинающих и опытных математиков, с особенным акцентом на компьютерные науки.

задан
3 Дек ’18 19:27

показан
552 раза

обновлен
3 Дек ’18 19:40

Докажите что lnx 1 x

Зафиксируем числа a 0 и a 1 . Построим последовательность < a n >в которой

a n + 1 = ( n 1).

Выразите a n через a 0 , a 1 и n .

Старый калькулятор I. а) Предположим, что мы хотим найти ( x > 0) на калькуляторе, который кроме четырех обычных арифметических действий умеет находить . Рассмотрим следующий алгоритм. Строится последовательность чисел < y n >, в которой y 0 — произвольное положительное число, например, y 0 = , а остальные элементы определяются соотношением

y n + 1 = ( n 0).

б) Постройте аналогичный алгоритм для вычисления корня пятой степени.

Старый калькулятор II. Производная функции ln x при x = 1 равна 1. Отсюда

Воспользуйтесь этим фактом для приближенного вычисления натурального логарифма числа N . Как и в задаче 9.51 , разрешается использовать стандартные арифметические действия и операцию извлечения квадратного корня.

Метод итераций. Для того, чтобы приближенно решить уравнение, допускающее запись f ( x ) = x , применяется метод итераций. Сначала выбирается некоторое число x 0 , а затем строится последовательность < x n >по правилу x n + 1 = f ( x n ) ( n 0). Докажите, что если эта последовательность имеет предел x * = x n , и функция f ( x ) непрерывна, то этот предел является корнем исходного уравнения: f ( x *) = x * .

Страница: > [Всего задач: 44]

Проект осуществляется при поддержке и .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *