Как найти острый угол ромба
Перейти к содержимому

Как найти острый угол ромба

  • автор:

Найти углы ромба

углы ромба

Формулы синуса углов через площадь S и сторону :

Синус угла в ромбе

Формулы тангенса половинных углов через диагонали

Тангенс угла в ромбе

Тангенс угла в ромбе

Формулы соотношения острого и тупого углов:

Формулы углов параллелограмма

Для определения величины угла в градусах или радианах, используем функции arccos или arcsin или arctg

Сумма углов четырехугольника

Подробности Автор: Administrator Опубликовано: 25 ноября 2011 Обновлено: 13 августа 2021

Вычислить угол ромба.

С помощью онлайн калькулятора вы сможете вычислить угол ромба через формулы. Чтобы вычислить угол ромба, просто введите ваши данные.

Содержимое

  1. Острый угол ромба через длинную диагональ и сторону.
  2. Острый угол ромба через короткую диагональ и сторону.
  3. Тупой угол ромба через длинную диагональ и сторону.
  4. Тупой угол ромба через короткую диагональ и сторону.
  5. Острый угол ромба через диагонали.
  6. Угол ромба через площадь и сторону.
  7. Острый угол ромба через радиус вписанной окружности в ромб и площадь ромба.
  8. Острый угол ромба через высоту и сторону.
  9. Половинный угол ромба через высоту и диагональ.
  10. Половинный острый угол ромба через диагонали.
  11. Половинный тупой угол ромба через диагонали.

 ромб

  1. У ромба четыре угла, два противоположных угла острые и равные, другие два противоположных угла тупые и равные.
  2. Угол ромба равен отношению площади на сторону в квадрате.
  3. Острый угол ромба равен отношению высоты на сторону.
  4. Половинный угол ромба равен отношению высоты на диагональ.
  5. Половинный острый угол ромба равен отношению длинной диагонали на короткую диагональ.
  6. Половинный тупой угол ромба равен отношению короткой диагонали на длинную диагональ.

Острый угол ромба через длинную диагональ и сторону.

Острый угол ромба через длинную диагональ и сторону

cos α = D 2 2a 2 — 1

Где: D — длинная диагональ, a — сторона.

Геометрические фигуры. Ромб. Углы ромба. Как найти угол ромба.

Углы ромба , нахождение. Ромбы с равным размером стороны могут внешне довольно сильно отличаться друг от друга. Это разница объясняется различной величиной внутренних углов.

Углы ромба, нахождение:

1. Сумма 4-х внутренних углов ромба равняется 360°, точно так же как и у всякого четырехугольника. Противоположные углы ромба имеют одинаковую величину, причем, всегда в 1-ой паре равных углов — углы острые, во второй — тупые. 2 угла, которые прилегают к 1-ной стороне в сумме составляют развернутый угол.

Ромбы с равным размером стороны могут внешне довольно сильно отличаться друг от друга. Это разница объясняется различной величиной внутренних углов. То есть, для определения угла ромба не хватит знать лишь длину его стороны.

2. Для вычисления величины углов ромба хватит знать длины диагоналей ромба. После построения диагоналей ромб разбивается на 4 треугольника. Диагонали ромба располагаются под прямым углом, то есть, треугольники, которые образовались, оказываются прямоугольными.

Ромб — симметричная фигура, его диагонали есть в одно время и осями симметрии, вот почему каждый внутренний треугольник равен остальным. Острые углы треугольников, которые образованы диагоналями ромба, равняются ½ искомых углов ромба.

3. Тангенс острого угла прямоугольного треугольника соответствует отношению противолежащего катета к прилежащему. ½ любой из диагоналей ромба оказывается катетом прямоугольного треугольника.

Обозначим большую и малую диагонали ромба как d и d, а углы ромба — А (острый) и В (тупой), теперь из соотношения сторон в прямоугольных треугольниках внутри ромба находим:

4. Из формулы двойного угла tg (2α) = 2/(сtg α — tg α) находим тангенсы углов ромба:

По тригонометрическим таблицам находят углы, которые соответствуют полученным значениям тангенсов.

Острый угол ромба равен 60 градусам.

Когда острый угол ромба = 60°, значит, диагональ равняется стороне ромба и делит его на 2 одинаковых равносторонних треугольника.

Геометрические фигуры. Ромб. Углы ромба. Как найти угол ромба.

∆ ABD и ∆ BCD — равносторонние,

1) Изучим треугольник ABD.

Т.к. AB=AD (так как являются сторонами ромба), значит, ABD является равнобедренным треугольником с основанием BD.

Углы при основании равнобедренного треугольника:

Геометрические фигуры. Ромб. Углы ромба. Как найти угол ромба.

Так как каждый угол треугольника ABD равен 60 градусов, значит, ∆ ABD является равносторонним треугольником. Значит, BD=AB.

2) Треугольники ABD и BCD одинаковы по трем сторонам (AB=BC=CD=AD (как стороны ромба), BD=AB (из доказанного)).

То есть, BCD оказывается равносторонним треугольником.

Что и требовалось доказать.

Т.к. сумма углов ромба, которые прилежат к одной стороне, равна 180º, когда острый угол ромба равен 60º, его тупой угол равен 120º. Таким образом:

Когда тупой угол ромба равен 120 градусам, значит диагональ равняется стороне ромба и делит его на 2 равных равносторонних треугольника.

Ромб с прямыми углами называется квадратом.

Вычислить угол ромба с помощью онлайн-калькулятора

vkontakte

Ромб – геометрическая фигура, представляющая собой отдельную разновидность параллелограмма. Все имеющееся стороны равны между собой. Геометрическая фигура представляет собой отдельную разновидность параллелограмма. Все имеющееся стороны равны между собой. Чтобы исключить риски недопонимания, а также освоить принципы расчетов, рекомендуется ознакомиться с некоторыми особенностями подробней.

Калькуляторы

  • Острый угол ромба через длинную диагональ и сторону
  • Острый угол ромба через короткую диагональ и сторону
  • Тупой угол ромба через длинную диагональ и сторону
  • Тупой угол ромба через короткую диагональ и сторону
  • Острый угол ромба через диагонали
  • Угол ромба через площадь и сторону
  • Острый угол ромба через радиус вписанной окружности в ромб и площадь ромба
  • Острый угол ромба через высоту и сторону
  • Половинный угол ромба через высоту и диагональ
  • Половинный острый угол ромба через диагонали
  • Половинный тупой угол ромба через диагонали

Острый угол ромба через длинную диагональ и сторону

Рис 1

Для проведения расчетов используется формула:

cos α = D² / 2a² — 1

где D — длинная диагональ, a — сторона.

Диагональ ( D ):
Сторона ( a ):
Цифр после запятой:
Результат в:
Угол( α ) = градус

Пример. Предположим, что длинная диагональ 25 мм, сторона – 15 мм. Отталкиваясь от полученных сведений, результат получается следующим: cos α = 25² / 2 х 15² — 1 = 67.11º

Тупой угол ромба через длинную диагональ и сторону

Рис 3

Имея достоверные данные о значение длинной диагонали (D) и стороне (a), порядок вычисления не предполагает под собой каких-либо сложностей с определением. Для этого в геометрии предлагается воспользоваться следующей формулой:

cos β = D² / 2a² — 1
Диагональ ( D ):
Сторона ( a ):
Цифр после запятой:
Результат в:
Угол( α ) = градус

Пример. Предположим, D = 60 мм, a = 90 мм. Исходя из полученных сведений, расчет по имеющейся формуле имеет вид: cos β = 60² / 2 х 90² — 1 . В таком случае cos β = 141.05. При условии, что D>a, решение не представляется возможным.

Острый угол ромба через короткую диагональ и сторону

Рис 2

Для проведения интересующегося расчета требуется знать данные о короткой диагонали (d) и стороне (a). При условии наличия используемая формула имеет следующий вид:

cos α = 1 – d² / 2a²

где d — короткая диагональ, a — сторона.

Диагональ ( d ):
Сторона ( a ):
Цифр после запятой:
Результат в:
Угол( α ) = градус

Пример. Из представленной формулы следует, что инициировать получение интересующих данных не вызывает сложностей. Чтобы удостовериться в этом, достаточно рассмотреть пример. Допустим, что d = 40 мм, a = 25 мм. В таком случае определение результата осуществляется следующим образом: cos α = 1 – 40² / 2 х 25² .

Используя калькулятор, становится известно, что cos α = 106.26. Подтвердить подлинность результата можно в режиме онлайн через специализированный сервис вычислений.

Острый угол ромба через диагонали

Рис 5

Представленный параметр расчета по праву считается одним из наиболее сложных. Чтобы исключить риски допущения ошибок и недопонимания, рекомендуется ответственно подходить к организации вычислений. Чтобы узнать информацию, чему равняется sin α, достаточно воспользоваться следующей формулой:

sin α = (2 · Dd)/ (D² + d²)

где D является длинной диагональю, d — короткой.

Диагональ ( D ):
Диагональ ( d ):
Цифр после запятой:
Результат в:
Угол( α ) = градус

Во время определения sin α оптимальным решением станет использование стандартных математических правил. Они предполагают первичное умножение, после чего деление. Суммирование осуществляется на завершающем этапе определения значения.

Пример. Предположим, D = 85 мм, d = 15 мм. Имеющиеся значения требуется подставить в формулу. В итоге получается: sin α = (2 · 85)/85² + 15² . Используя автоматизированный калькулятор для геометрии, получается, что sin α = 20.01

Тупой угол ромба через короткую диагональ и сторону

Рис 4

Порядок вычисления предполагает использование соответствующей формулы. Чтобы инициировать расчет требуется знать точные данные относительно короткой диагонали (d) и стороне (a). В таком случае расчет проходит следующим образом:

cos β = 1 — d² / 2a²

где d — короткая диагональ, a — сторона ромба.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *