Докажите что fs перпендикулярна вс1
Перейти к содержимому

Докажите что fs перпендикулярна вс1

  • автор:

Теорема о трех перпендикулярах

Теорема о трех перпендикулярах. Геометрия. 10 класс

Повторение
Признак перпендикулярности прямой и плоскости.
Если прямая перпендикулярна двум пересекающимся
прямым, лежащим в плоскости, то она
перпендикулярна и этой плоскости.
a
p
p , a p,
q , a q,
a

6.

Планиметрия
Стереометрия
А
А
а
М
Н
М
Н
Отрезок АН – перпендикуляр
Точка Н – основание перпендикуляра
Отрезок АМ – наклонная
Точка М – основание наклонной
Отрезок МН – проекция
наклонной на прямую а
Отрезок МН – проекция
наклонной на плоскость

7.

Планиметрия
Стереометрия
А
А
а
М
Н
Н
М
Из всех расстояний от точки А
до различных точек прямой
а
плоскости
наименьшим является длина
перпендикуляра.
Расстояние от точки до
Расстояние от точки до
прямой – длина
плоскости – длина
перпендикуляра
перпендикуляра

8.

Расстояние от лампочки до земли
измеряется по перпендикуляру,
проведенному от лампочки к
плоскости земли

9.

Если две плоскости параллельны, то все точки одной
плоскости равноудалены от другой плоскости.
II
Расстояние от произвольной точки одной из параллельных
плоскостей до другой плоскости называется
расстоянием между параллельными плоскостями.

10.

Если прямая параллельна плоскости, то все точки прямой
равноудалены от этой плоскости.
a
a II
Расстояние от произвольной точки прямой до плоскости
называется расстоянием между прямой и параллельной
ей плоскостью.

11.

В
Н-Я
П-Я
А
П-Р
С
Н-Я
П-Я
M

12.

Теорема о трех перпендикулярах.(ТТП)
Прямая, проведенная в плоскости через основание
наклонной перпендикулярно ее проекции на эту
плоскость, перпендикулярна и самой наклонной.
А
П-Р
Н
Н-я
П-я
М
a

13.

Обратная теорема.
Прямая, проведенная в плоскости через основание
наклонной перпендикулярно к ней,
перпендикулярна и ее проекции.
А
П-Р
Н
Н-я
П-я
М
a

14. Применение знаний в стандартной ситуации

15.

Прямая АК перпендикулярна к плоскости правильного
треугольника АВС, а точка М – середина стороны ВС.
Докажите, что МК ВС.
К
П-Р
А
В
П-я
М
С
BC AМ
П-я
TTП
BC MК
Н-я

16.

№1. Отрезок АD перпендикулярен к плоскости
равнобедренного треугольника АВС. Известно, что АВ = АС
= 5 см, ВС = 6 см, АD = 12 см.
Найдите расстояния от концов отрезка АD до прямой ВС.
D
П-Р
В
12
П-я
А
N 6
5
С
BC AN
П-я
TTП
BC DN
Н-я
АN и DN – искомые расстояния

17.

№2. В треугольнике угол С прямой, угол А равен 600,
AС=12см. DC (АВС). DC= 6 5 Найдите расстояния:
а) от точки С до прямой АВ, б) от точки D до прямой АВ.
АВ СN
D
AB DN
TTП
Н-я
П-я
6 5
П-Р
CN и DN – искомые расстояния
А
С
12
600
N
В

Признак перпендикулярности прямой и плоскости. 10 класс

Теорема о трех перпендикулярах. Геометрия. 10 класс

Планиметрия
Стереометрия
А
А
а
М
Н
М
Н
Отрезок АН – перпендикуляр
Точка Н – основание перпендикуляра
Отрезок АМ – наклонная
Точка М – основание наклонной
Отрезок МН – проекция
наклонной на прямую а
Отрезок МН – проекция
наклонной на плоскость

5.

Планиметрия
Стереометрия
А
А
а
М
Н
М
Н
Из всех расстояний от точки А до
плоскости
различных точек прямой
а
наименьшим является длина
перпендикуляра.
Расстояние от точки до
Расстояние от точки до
прямой – длина
плоскости – длина
перпендикуляра
перпендикуляра

6.

Расстояние от лампочки до земли
измеряется по перпендикуляру,
проведенному от лампочки к
плоскости земли

7.

Постановка проблемы
Дана плоскость .
Из точки А опущен перпендикуляр на плоскость .
В плоскости проведена прямая с .
Вопрос: 1.Как найти расстояние от точки В до прямой с?
2.Как найти расстояние от точки А до прямой с?
А
П-Р
В
Н-я
П-я
М
с

8.

А
А
В
В
с
с
А
В
М
с
М
Прямая, проведенная в
плоскости через основание
наклонной, перпендикулярно к
ее проекции на эту плоскость,
перпендикулярна и
к самой наклонной.

9.

Прямая, проведенная в плоскости через
основание наклонной перпендикулярно к
ее проекции на эту плоскость,
перпендикулярна и к самой наклонной.
Обратная теорема. Прямая, проведенная в плоскости через основание
наклонной перпендикулярно к ней,
перпендикулярна и к ее проекции.
А
П-Р
Н-я
П-я
Н
М
a

10.

Прямая АК перпендикулярна к плоскости правильного
треугольника АВС, а точка М – середина стороны ВС. Докажите,
что МК ВС.
К
П-р
А
В
П-я
М
С
BC AМ
П-я
TTП
BC MК
Н-я

11.

Через вершину А прямоугольника АВСD проведена прямая АК,
перпендикулярная к плоскости прямоугольника. Известно, что КD = 6 см,
КВ = 7 см, КС = 9 см. Найдите:
а) расстояние от точки К до плоскости прямоугольника АВСD;
б) расстояние между прямыми АК и СD.
K
КА – искомое расстояние
АD – общий перпендикуляр
АD – искомое расстояние
6
D
9
П-я 1
С
П-Р
?
А
Найдем другие прямые углы…
TTП
СD AD
П-я 1
7
BC BA
П-я 2
В
CD Н-яDK1
TTП
BC BK
Н-я 2

12.

Домашнее задание.
П.15 изучить, № 15.2,15.4,

13.

№1.
Через вершину прямого угла С равнобедренного прямоугольного
треугольника АВС проведена прямая СМ, перпендикулярная к его
плоскости. Найдите расстояние от точки М до прямой АВ, если
АС = 4 см, а СМ = 2 7 см.
М
П-р
2 7
С
А
4
П-я
F
В
AВ СF
П-я
TTП
AВ MF
МF – искомое расстояние
Н-я

14.

№2.
Из точки М проведен перпендикуляр МВ к плоскости
прямоугольника АВСD. Докажите, что треугольники АМD и
МСD прямоугольные.
TTП
AD AB
М
П-я 1
DC BC
П-Р
А
П-я 1
D
П-я 2
В
С
AD AM
Н-я 1
TTП
DC CM
Н-я 2

15.

№3 (дом.)
Отрезок АD перпендикулярен к плоскости равнобедренного треугольника АВС.
Известно, что АВ = АС = 5 см, ВС = 6 см, АD = 12 см.
Найдите расстояния от концов отрезка АD до прямой ВС.
D
П-р
В
12
П-я
А
N 6
5
С
BC AN
П-я
TTП
BC DN
Н-я
АN и DN – искомые расстояния

Докажите следствие: Если прямая перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой. С дано, найти и чертежом (чертёж не обязательно).

Inf777

Решите треугольник со сторонами 5 и 6 сантиметров, и углом 20°.

Допоможіть будь ласка. Даю 50 балів.Це якщо що 8 класс.

Два перпендикулярных отрезка КМ и LN пересекаются в общей серединной точке Р. Какой величины N и < K, если < L = 55° и <M=35°?1. Отрезки деля … тся пополам, значит, КР = =LP=MPL, таккак прямые перпендикулярны и каждый из этих углов равен ____По первому признаку равенства треугольник KPN равен треугольнику MPL.2. В равных треугольниках соответствующие углы равны.В этих треугольниках соответствующие < и <M, Z<WZ <L.<K =<ZN=​

Помогите с геометрией ​

Материалы к зачету по теме «Перпендикулярность прямой и плоскости» 10 класс

Зачет по теме «Перпендикулярность прямой и плоскости» в 10 классе.
Представлены и теоретические вопросы и практические задания.

Оценить 1879 1

Содержимое разработки

Зачет по теме «Перпендикулярность прямой и плоскости»

I. Уметь доказывать теоремы:

Лемма о перпендикулярности двух параллельных прямых к третьей прямой (стр. 34 п. 15).

Теоремы, об установлении связи между параллельностью прямых и их перпендикулярностью к плоскости (стр. 35, 36 п. 16).

Признак перпендикулярности прямой и плоскости (стр. 36 п. 17).

Теорема о трех перпендикулярах (обратная) (стр. 42 п. 20).

II. Знать ответы на следующие вопросы

Определение перпендикулярных прямых в пространстве.

Определение прямой перпендикулярной к плоскости.

Показать на чертеже (рис. 51) перпендикуляр, наклонную, проекцию наклонной.

Определение расстояния между параллельными плоскостями (стр. 41).

Определение расстояния между скрещивающимися прямыми (стр. 41).

Определение расстояния между прямой и параллельной ей плоскостью (стр. 41).

В тетраэдре ДАВС АД┴ АС, АД┴ АВ, ДС┴ СВ.

А) Докажите, что АД┴ ВС.

Б) Докажите, что прямая ВС перпендикулярна плоскости АДС.

В) Найдите площадь треугольника ВСА, если ВС= 4, АС = 3.

2. Отрезок АВ пересекает некоторую плоскость в точке О. Прямые АД и ВС, перпендикулярные этой плоскости, пересекают ее в точках Д и С соответственно, АД = 6 см, ВС = 2 см, ОС = 1,5 см. Найдите АВ.

3. Отрезок АВ, равный 5 см, не имеет общих точек с плоскостью α. Прямые АС и ВД, перпендикулярные этой плоскости, пересекают ее в точках С и Д соответственно. Найдите ВД, если СД = 3 см, АС = 17 см, ВД

4. Прямая СД перпендикулярна плоскости остроугольного треугольника АВС. СК – его высота. Докажите, что прямые ДК и АВ взаимно перпендикулярны. Найдите расстояние от точки А до плоскости ДКС, если ДА = √2 см, а ДАК = 45˚.

5. В треугольнике АВС АС = ВС = 10 см, В = 30˚. Прямая ВД перпендикулярна плоскости треугольника, ВД = 5 см. Найдите расстояние от точки Д до прямой АС и расстояние от точки В до плоскости АДС.

6. Отрезок АМ является перпендикуляром к плоскости прямоугольника АВСД. Угол между прямой МС и этой плоскостью равен 30˚, АД = √2, СД = 2. Найдите АМ.

7. В параллелограмме АВСД АВ = 20 см, ВАД = 45˚, ВМ – перпендикуляр к плоскости АВС. Угол между прямой МА и плоскостью АВС равен 60˚. Найдите расстояние от точки М до плоскости АВС.

8. Точка О – центр квадрата АВСД. Прямая ОМ перпендикулярна плоскости АВСД. Доказать, что отрезки АМ, ВМ и ДМ равны.

9. В треугольнике АВС известно, что АВ = АС = 20 см, ВС = 24 см. Отрезок МА перпендикулярен плоскости АВС и имеет длину 12 см. Найти расстояние от точки М до прямой ВС.

10. АВСД – квадрат, ВМ┴ АВС. Найдите отрезок ДМ, если АВ = √12 см, а ВМ = 5 см.

11. Треугольник АВС – прямоугольный, С = 90˚, АС = 8 см, ВС = 6 см. Отрезок СД – перпендикуляр к плоскости АВС. Найдите СД, если расстояние от точки Д до стороны АВ равно 5 см.

12. Треугольник МКН равносторонний со стороной, равной 18 см. Точка С удалена от вершин треугольника МКН на 12 см. Найдите расстояние от точки С до плоскости МКН.

13. АВСД – квадрат. Точка М удалена от сторон квадрата на 3√2 см. Найдите периметр квадрата, если точка М удалена от плоскости АВС на √2 см.

14. АВСДА1В1С1Д1 – куб. Найдите расстояние между прямыми АВ1 и ВС, если ребро куба равно 2√2 см.

15. Отрезок АВ пересекает плоскость α в точке О. Прямые АА1 и ВВ1 перпендикулярны к плоскости α и пересекают ее в точках А1 и В1 соответственно. Найдите АВ, если А1А = 4 см, А1АО = 60˚, А1О : ОВ = 1 : 2.

16. Из точки А к плоскости α проведены наклонные АВ и АС. Найдите расстояние от точки А до плоскости α, если АВ = 20 см, АС = 15 см, а длины проекций АВ и АС на плоскость α относятся как 16 : 9.

17. Концы отрезка АВ лежат в двух параллельных плоскостях. Найдите длину отрезка АВ, если он образует со своей проекцией на одну из данных плоскостей угол 45˚, а расстояние между данными плоскостями равно 4√2 дм.

18. В треугольнике АВС АВ = ВС = 10 см, АС = 12 см. Через точку В к плоскости треугольника проведен перпендикуляр ВД длиной 15 см. Найдите расстояние от точки Д до прямой АС.

  • Калюк Галина Руслановна
  • Построение сечений параллелепипеда
  • Формулы радиусов вписанного и описанного кругов треугольника
  • Урок алгебры в 7 классе: Формулы сокращенного умножения
  • Конспект урока по геометрии в 8 классе Теорема Пифагора

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *