Как умножить 3 матрицы между собой
Перейти к содержимому

Как умножить 3 матрицы между собой

  • автор:

Умножение матриц в EXCEL

В этой статье рассмотрены операции умножения матриц с помощью функции МУМНОЖ() или англ.MMULT и с помощью других формул, а также свойства ассоциативности и дистрибутивности операции умножения матриц. Примеры решены в MS EXCEL.

Операция умножения двух матриц А и В определена только для случаев, когда число столбцов матрицы А равно числу строк матрицы В.

Произведение матрицы А порядка P x N и матрицы В порядка N x Q — это такая матрица С порядка P x Q, у которой каждый элемент равен сумме произведений элементов i-ой строки матрицы А на соответствующие элементы j-ого столбца матрицы В , то есть:

Для умножения матриц в MS EXCEL существует специальная функция МУМНОЖ() , которую нужно вводить как формулу массива .

Рассмотрим сначала умножение квадратных матриц 2 х 2.

Разместим матрицы в диапазонах А8:В9 и D8:E9 (см. файл примера ).

Результат, также матрицу 2 х 2, будем вводить в диапазон H8:I9 .

  • выделите указанный диапазон H8:I9
  • поставьте курсор в Строку формул (или нажмите клавишу F2 )
  • введите формулу =МУМНОЖ(A8:B9;D8:E9)
  • нажмите CTRL+SHIFT+ENTER

Выделенный диапазон заполнится элементами матрицы. В принципе можно выделить заведомо б о льший диапазон, в этом случае лишние ячейки будут заполнены ошибкой #Н/Д.

Удалить отдельный элемент матрицы А*В не удастся — только все элементы сразу (выделите весь диапазон и нажмите клавишу DEL ).

Чтобы изменить значения аргументов функции (например, поменять матрицы местами), выделите любую ячейку матрицы, нажмите F2 , исправьте формулу и нажмите CTRL+SHIFT+ENTER .

Альтернативной формулой для перемножения матриц является формула массива =СУММПРОИЗВ($A8:$B8;ТРАНСП(D$8:D$9)) . Введите формулу в верхнюю левую ячейку диапазона и нажмите CTRL+SHIFT+ENTER . Затем скопируйте ее вниз и вправо на нужное количество ячеек.

Если попытаться перемножить матрицы неподходящей размерности (когда число столбцов матрицы А НЕ равно числу строк матрицы В), то функция МУМНОЖ() вернет ошибку #ЗНАЧ!

В файле примера также продемонстрированы свойства ассоциативности и дистрибутивности операции умножения матриц.

Как умножить 3 матрицы между собой

Предположим, что нам нужно умножить матрицу A на матрицу B.

Чтобы свести эту проблему к уже известной («Умножение строки на столбец»), матрицу A будем рассматривать как набор строк, тогда как матрицу B — как набор столбцов.

Тогда все, что нам предстоит проделать — это умножить каждую строку матрицы A на каждый столбец матрицы B. При этом номера перемножаемых строк и столбцов сохраняют свою силу — в том смысле, что результат умножения, например, пятой строки на третий столбец записывается в пятую строку на третий столбец.

Пример:

Правило умножения строки на столбец:

Если обозначить строки матрицы A символами , а столбцы матрицы B – символами , то правило (1) матричного умножения можно представить в следующем блочном виде:

Таким образом, если матрица A содержит m строк, а матрица B содержит n-столбцов, то произведение AB представляет собой матрицу С размера m × n. Элемент , стоящий в i-ой строке и j-ом столбце матрицы AB, вычисляется по правилу умножения строки на столбец: i-ая строка матрицы A умножается на j-ый столбец матрицы B.

  • Произведение AB определено, если число столбцов матрицы A совпадает с числом строк матрицы B. (Другими словами, число элементов в строке матрицы A должно совпадать с числом элементов в столбце матрицы B.)
  • Произведение BA определено, если число столбцов матрицы B совпадает с числом строк матрицы A.
  • Существование одного из произведений (AB или BA) не влечет за собой существование другого.
  • Если определено каждое из таких произведений, то размеры матриц AB и BA не обязательно совпадают друг с другом. Например, результатом умножения матрицы A размера 1×n на матрицу B размера n×1 является число (то есть матрица размера 1×1), тогда как произведение BA представляет собой квадратную матрицу n-го порядка.
  • Если матрицы A и B являются квадратными маирицами n-го, то и их произведения AB и BA являются матрицами такого же порядка. Однако даже для таких матриц их произведения в одном и другом порядках равны только в некоторых частных случаях.
  • Произведение нескольких матриц, расположенных в определенном порядке, однозначно определено, если число столбцов каждой матрицы равно числу строк соседней матрицы справа. В этом случае для нахождения произведения матриц можно использоать произвольный порядок расстановки скобок (см Свойства матричных операций).

Символическая запись означает произведение двух одинаковых квадратных матриц:
Аналогичным образом определяются другие целые положительные степени квадратной матрицы:

Правило (1) матричного умножения сохраняет свой вид и в том случае, когда элементами матриц A и B являются другие матрицы. Пусть, например, матрицы A и B представлены в виде

(4)

где A i j и B i j – некоторые матрицы, размеры которых таковы, что соответствующие матричные произведения определены.
Тогда

(5)

Действия с матрицами

Данное методическое пособие поможет Вам научиться выполнять действия с матрицами: сложение (вычитание) матриц, транспонирование матрицы, умножение матриц, нахождение обратной матрицы. Весь материал изложен в простой и доступной форме, приведены соответствующие примеры, таким образом, даже неподготовленный человек сможет научиться выполнять действия с матрицами. Для самоконтроля и самопроверки Вы можете бесплатно скачать матричный калькулятор >>>.

Я буду стараться минимизировать теоретические выкладки, кое-где возможны объяснения «на пальцах» и использование ненаучных терминов. Любители основательной теории, пожалуйста, не занимайтесь критикой, наша задача – научиться выполнять действия с матрицами.

Для СВЕРХБЫСТРОЙ подготовки по теме (у кого «горит») есть интенсивный pdf-курс Матрица, определитель и зачёт!

Матрица – это прямоугольная таблица каких-либо элементов. В качестве элементов мы будем рассматривать числа, то есть числовые матрицы. ЭЛЕМЕНТ – это термин. Термин желательно запомнить, он будет часто встречаться, не случайно я использовал для его выделения жирный шрифт.

Обозначение: матрицы обычно обозначают прописными латинскими буквами

Пример: рассмотрим матрицу «два на три»:

Данная матрица состоит из шести элементов:

Все числа (элементы) внутри матрицы существуют сами по себе, то есть ни о каком вычитании речи не идет:

Это просто таблица (набор) чисел!

Также договоримся не переставлять числа, если иного не сказано в объяснениях. У каждого числа свое местоположение, и перетасовывать их нельзя!

Рассматриваемая матрица имеет две строки:

и три столбца:

СТАНДАРТ: когда говорят о размерах матрицы, то сначала указывают количество строк, а только потом – количество столбцов. Мы только что разобрали по косточкам матрицу «два на три».

Если количество строк и столбцов матрицы совпадает, то матрицу называют квадратной, например: – матрица «три на три».

Если в матрице один столбец или одна строка , то такие матрицы также называют векторами.

На самом деле понятие матрицы мы знаем еще со школы, рассмотрим, например точку с координатами «икс» и «игрек»: . По существу, координаты точки записаны в матрицу «один на два». Кстати, вот Вам и пример, почему порядок чисел имеет значение: и – это две совершенно разные точки плоскости.

Теперь переходим непосредственно к изучению действий с матрицами:

1) Действие первое. Вынесение минуса из матрицы (внесение минуса в матрицу).

Вернемся к нашей матрице . Как вы наверняка заметили, в данной матрице слишком много отрицательных чисел. Это очень неудобно с точки зрения выполнения различных действий с матрицей, неудобно писать столько минусов, да и просто в оформлении некрасиво выглядит.

Вынесем минус за пределы матрицы, сменив у КАЖДОГО элемента матрицы знак:

У нуля, как Вы понимаете, знак не меняется, ноль – он и в Африке ноль.

Обратный пример: . Выглядит безобразно.

Внесем минус в матрицу, сменив у КАЖДОГО элемента матрицы знак:

Ну вот, гораздо симпатичнее получилось. И, самое главное, выполнять какие-либо действия с матрицей будет ПРОЩЕ. Потому что есть такая математическая народная примета: чем больше минусов – тем больше путаницы и ошибок.

2) Действие второе. Умножение матрицы на число.

Всё просто, для того чтобы умножить матрицу на число, нужно каждый элемент матрицы умножить на данное число. В данном случае – на тройку.

Еще один полезный пример:

– умножение матрицы на дробь

Сначала рассмотрим то, чего делать НЕ НАДО:

Вносить дробь в матрицу НЕ НУЖНО, во-первых, это только затрудняет дальнейшие действия с матрицей, во-вторых, затрудняет проверку решения преподавателем (особенно, если – окончательный ответ задания).

И, тем более, НЕ НАДО делить каждый элемент матрицы на минус семь:

Из статьи Математика для чайников или с чего начать, мы помним, что десятичных дробей с запятой в высшей математике стараются всячески избегать.

Единственное, что желательно сделать в этом примере – это внести минус в матрицу:

А вот если бы ВСЕ элементы матрицы делились на 7 без остатка, то тогда можно (и нужно!) было бы поделить.

В этом случае можно и НУЖНО умножить все элементы матрицы на , так как все числа матрицы делятся на 2 без остатка.

Примечание: в теории высшей математики школьного понятия «деление» нет. Вместо фразы «это поделить на это» всегда можно сказать «это умножить на дробь». То есть, деление – это частный случай умножения.

3) Действие третье. Транспонирование матрицы.

Для того чтобы транспонировать матрицу, нужно ее строки записать в столбцы транспонированной матрицы.

Строка здесь всего одна и, согласно правилу, её нужно записать в столбец:

Транспонированная матрица обычно обозначается надстрочным индексом или штрихом справа вверху.

Сначала переписываем первую строку в первый столбец:

Потом переписываем вторую строку во второй столбец:

И, наконец, переписываем третью строку в третий столбец:

Готово. Образно говоря, транспонировать – это значит взять матрицу за правый верхний угол и аккуратно повернуть её «на себя» по диагонали, «стряхивая» числа в столбцы транспонированной матрицы. Такая вот у меня ассоциация.

4) Действие четвертое. Сумма (разность) матриц.

Сумма матриц действие несложное.
НЕ ВСЕ МАТРИЦЫ МОЖНО СКЛАДЫВАТЬ. Для выполнения сложения (вычитания) матриц, необходимо, чтобы они были ОДИНАКОВЫМИ ПО РАЗМЕРУ.

Например, если дана матрица «два на два», то ее можно складывать только с матрицей «два на два» и никакой другой!

Сложить матрицы и

Для того чтобы сложить матрицы, необходимо сложить их соответствующие элементы:

Для разности матриц правило аналогичное, необходимо найти разность соответствующих элементов.

Найти разность матриц ,

А как решить данный пример проще, чтобы не запутаться? Целесообразно избавиться от лишних минусов, для этого внесем минус в матрицу :

Примечание: в теории высшей математики школьного понятия «вычитание» нет. Вместо фразы «из этого вычесть это» всегда можно сказать «к этому прибавить отрицательное число». То есть, вычитание – это частный случай сложения.

5) Действие пятое. Умножение матриц.

Чем дальше в лес, тем толще партизаны. Скажу сразу, правило умножения матриц выглядит очень странно, и объяснить его не так-то просто, но я все-таки постараюсь это сделать, используя конкретные примеры.

Какие матрицы можно умножать?

Чтобы матрицу можно было умножить на матрицу нужно, чтобы число столбцов матрицы равнялось числу строк матрицы .

Пример:
Можно ли умножить матрицу на матрицу ?

, значит, умножать данные матрицы можно.

А вот если матрицы переставить местами, то, в данном случае, умножение уже невозможно!

, следовательно, выполнить умножение невозможно:

Не так уж редко встречаются задания с подвохом, когда студенту предлагается умножить матрицы, умножение которых заведомо невозможно.

Следует отметить, что в ряде случаев можно умножать матрицы и так, и так.
Например, для матриц, и возможно как умножение , так и умножение

Как умножить матрицы?

Умножение матриц лучше объяснить на конкретных примерах, так как строгое определение введет в замешательство (или помешательство) большинство читателей.

Начнем с самого простого:

Умножить матрицу на матрицу
Я буду сразу приводить формулу для каждого случая:

– попытайтесь сразу уловить закономерность.

Умножить матрицу на матрицу

В результате получена так называемая нулевая матрица.

Попробуйте самостоятельно выполнить умножение (правильный ответ ).

Обратите внимание, что ! Это почти всегда так!

Таким образом, при умножении переставлять матрицы нельзя!

Если в задании предложено умножить матрицу на матрицу , то и умножать нужно именно в таком порядке. Ни в коем случае не наоборот.

Переходим к матрицам третьего порядка:

Умножить матрицу на матрицу

Формула очень похожа на предыдущие формулы:

А теперь попробуйте самостоятельно разобраться в умножении следующих матриц:

Умножьте матрицу на матрицу

Вот готовое решение, но постарайтесь сначала в него не заглядывать!

Данная тема достаточно обширна, и я вынес этот пункт на отдельную страницу.

А пока спектакль закончен.

После освоения начального уровня рекомендую отработать действия с матрицами на уроке Свойства операций над матрицами. Матричные выражения.

Автор: Емелин Александр

Блог Емелина Александра

(Переход на главную страницу)

Zaochnik.com – профессиональная помощь студентам,

cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5

© Copyright mathprofi.ru, Александр Емелин, 2010-2023. Копирование материалов сайта запрещено

Теоретический материал

Две матрицы и равны между собой, если они одинакового размера и их соответствующие элементы равны, т.е.

Сложение матриц

Складывать можно только матрицы одинакового размера по правилу

Свойства сложения матриц

Умножение матрицы на число

Чтобы умножить матрицу на число a надо умножить на это число каждый элемент матрицы.

Свойства умножения матриц

Вычитание матриц

Произведение двух матриц

Умножать можно только те матрицы, для которых число столбцов в первой матрицы равно числу строк во второй матрицы. Произведением двух матриц

у которой элемент находится по формуле

т.е. элемент матрицы , стоящий на пересечении – строки и -столбца равен сумме произведений элементов – строки матрицы на соответствующие элементы -столбца матрицы . В результате умножения матрицы на матрицу получится матрица число строк , которой равно числу строк матрицы , а число столбцов равно числу столбцов матрицы .

Пример: Перемножить матрицы и .

Если , то матрицы коммутативная.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *