Определение

Среднеквадратическое отклонение (англ. Standard Deviation, SD) является показателем, который используется в теории вероятности и математической статистике для оценки степени рассеивания случайной величины относительно ее математического ожидания. В инвестировании стандартное отклонение доходности ценных бумаг или портфеля используется для оценки меры риска. Чем выше степень рассеивания доходности ценной бумаги относительно ожидаемого доходности (математическое ожидание доходности), тем выше риск инвестирования, и наоборот.

Среднеквадратическое отклонение как правило обозначается греческой буквой σ (сигма), а стандартное отклонение латинской буквой S или как Std(X), где X – случайная величина.

Формула

Истинное значение среднеквадратического отклонения

Если известно точное распределение дискретной случайной величины, а именно, известно ее значение при каждом исходе и может быть оценена вероятность каждого исхода, то формула расчета среднеквадратического отклонения будет выглядеть следующим образом.

Среднеквадратическое отклонение - формула

Где Xi – значение случайной величины X при i-ом исходе; M(X) математическое ожидание случайной величины X; pi – вероятность i-го исхода; N – количество возможных исходов.

При этом математическое ожидание случайной величины рассчитывается по формуле:

Математическое ожидание - формула

Стандартное отклонение генеральной совокупности

На практике вместо точного распределение случайной величины обычно доступна только выборка данных. В этом случае рассчитывается оценочное значение среднеквадратического отклонения, которое в этом случае называют стандартным отклонением (S). Если оценка основывается на всей генеральной совокупности данных, необходимо использовать следующую формулу.

Стандартное отклонение генеральной совокупности - формула

Где Xi – i-ое значение случайной величины X; X – среднеарифметическое генеральной совокупности; N – объем генеральной совокупности.

Стандартное отклонение выборки

Если используется не вся генеральная совокупность данных, а выборка из нее, то формула расчета стандартного отклонения основывается на несмещенной оценке excel дисперсии.

Стандартное отклонение выборки - формула

Где Xi – i-ое значение случайной величины X; X – среднеарифметическое выборки; N – объем выборки.

Примеры расчета

Пример 1

Портфельный менеджер должен оценить риски инвестирования в акции двух компаний А и Б. При этом он рассматривает 5 сценариев развития событий, информация по которым представлена в таблице.

Поскольку нам известно точное распределение доходности каждой из акций, мы можем рассчитать истинное значение среднеквадратического отклонения доходности для каждой из них.

Шаг 1. Рассчитаем математическое ожидание доходности для каждой из акций.

M(А) = -5%×0,02+6%×0,25+15%×0,40+24%×0,30+34%×0,03 = 15,62%

M(Б) = -18%×0,02+2%×0,25+16%×0,40+27%×0,30+36%×0,03 = 22,14%

Шаг 2. Подставим полученные данные в первую формулу.

Среднеквадратическое отклонение - пример расчета

Как мы можем видеть, акции Компании А характеризуются меньшим уровнем риска, поскольку у них ниже среднеквадратическое отклонение доходности. Следует также отметить, что и ожидаемая доходность у них ниже, чем у акций Компании Б.

Пример 2

Аналитик располагает данными о доходности двух ценных бумаг за последние 5 лет, которые представлены в таблице.

Поскольку точное распределение доходности неизвестно, а в распоряжении аналитика есть только выборка из генеральной совокупности данных, мы можем рассчитать стандартное отклонение выборки на основании несмещенной дисперсии.

Шаг 1. Рассчитаем ожидаемую доходность для каждой ценной бумаги как среднеарифметическое выборки.

XА = (7 + 15 + 2 – 5 + 6) ÷ 5 = 5%

XБ = (3 – 2 + 12 + 4 +8) ÷ 5 = 5%

Шаг 2. Рассчитаем стандартное отклонение доходности для каждой из ценных бумаг по формуле для выборки из генеральной совокупности данных.

Стандартное отклонение выборки - пример расчета

Следует отметить, что обе ценные бумаги имеют равную ожидаемую доходность 5%. При этом стандартное отклонение доходности у ценной бумаги Б ниже, что при прочих равных делает ее более привлекательным объектом инвестирования в следствие лучшего профиля риск-доходность.

Стандартное отклонение в Excel

В Excel предусмотрено две функции для расчета стандартного отклонения выборки и генеральной совокупности.

Для выборки воспользуйтесь функцией «СТАНДОТКЛОН.В»:

Расчет стандартного отклонения выборки в Excel

  1. В диапазоне ячеек B1:F1 введены значения случайной величины X.
  2. Выберите выходную ячейку B2.
  3. В командной строке нажмите кнопку fx, во всплывшем окне «Вставка функции» выберите Категорию «Полный алфавитный перечень» и выберите функцию «СТАНДОТКЛОН.В».
  4. В поле «Число1» выберите диапазон ячеек B1:F1, поле «Число2» оставьте пустым и нажмите кнопку «OK».

Для генеральной совокупности используется функция «СТАНДОТКЛОН.Г»:

Расчет стандартного отклонения генеральной совокупности в Excel

  1. В диапазоне ячеек B1:F1 введены значения случайной величины X.
  2. Выберите выходную ячейку B2.
  3. В командной строке нажмите кнопку fx, во всплывшем окне «Вставка функции» выберите Категорию «Полный алфавитный перечень» и выберите функцию «СТАНДОТКЛОН.Г».
  4. В поле «Число1» выберите диапазон ячеек B1:F1, поле «Число2» оставьте пустым и нажмите кнопку «OK».

Интерпретация

В инвестировании стандартное отклонение доходности используется в качестве меры волатильности. Чем выше его значение, тем выше риск, связанный с инвестированием в этот актив, и наоборот. При прочих равных параметрах, предпочтение следует отдавать тому активу, у которого этот показатель будет минимальным.


Источник: http://allfi.biz/financialmanagement/RiskAndReturns/srednekvadraticheskoe-otklonenie.php


Поделись с друзьями



Рекомендуем посмотреть ещё:


Закрыть ... [X]

Выпадающий список в MS EXCEL на основе Проверки данных Вязание символа россии

Связанный диапазон в excel Связанный диапазон в excel Связанный диапазон в excel Связанный диапазон в excel Связанный диапазон в excel Связанный диапазон в excel Связанный диапазон в excel Связанный диапазон в excel

ШОКИРУЮЩИЕ НОВОСТИ